面向世界科技前沿,面向国家重大需求,面向国民经济主战场,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 >  > 

爱投彩票老版本_安全购彩

時間:2022-08-15 來源:本站 點擊:258次
【字体:

春节出行 这份陕西交通预警信息请收好!******

  陕西省公安厅交警总队发布2022年春节交通安全预警

  目前我省疫情已总体控制,社会生产生活秩序逐步恢复。因各地倡导“就地过年”,长假期间我省旅游、探亲较往年有所减少。随着社会生产生活逐步恢复常态,群众过年消费和春节出行需求加大,煤炭、天然气、成品油等大宗物资运输需求旺盛,客货运输流量增加,自驾出行人数仍将高位运行。同时,年关将至,预计节前学生流、务工流、探亲流可实现阶段性分流运输,春节后客流相对集中,易形成阶段性返程高峰。

  一、交通流量形势研判

  春节假期预计在在我省的西安、宝鸡、咸阳等中心城市,出现的人流、车流的高峰将会呈现以下特点:

  1月26日至31日(腊月二十四至腊月二十九)集中返乡期。因学生流、务工流、探亲流的阶段性分流运输,在各市区各客运场站和市区主要的出城路口车流将会比较平稳。

  当前,各城市尤其是西安的快速路出城方向的车辆出城时交通压力相对较大,可能出现车辆积压排队现象。2月1日—10日(正月初一至初十)复工复业和春节假期,主要为群众春节走亲访友出行的高峰,在各地市的主要出入道路周边,农村中心城镇及旅游景点,特色小镇周边的交通晚高峰时段可能会出现交通拥堵,将迎来一波出城和返城高峰,市区和市县各客运场站及城市快速路进出城方向交通压力间将会增加,有可能出现车辆滞留路面和缓慢通行现象。2月14日至25日春运后期,外出务工人流将会明显增多,届时将会在各地的汽车站、火车站周边道路出现交通高峰的节点。

  节日期间,全省主要旅游景区(点)车流人流将会有大的增加,扶风法门寺,岐山周公庙,凤翔灵山,乾县乾陵,华阴华山,铜川照金、玉华宫、药王山,延安宝塔山、枣园、万花,榆林红石峡、镇北台,佳县白云山,神木红碱淖、高家堡古镇等景点将迎来旅游高峰,周边道路车流量较大。

  节日期间,西安永兴坊、大雁塔、钟楼、南门、曲江以及临潼兵马俑、周至楼观台等地将出现交通高峰。预计曲江地区每天的19:00-22:00为极端交通高峰。

  二、高速公路施工信息

  1、沪陕高速西商段商洛方向蓝田至玉山之间K1495至K1494段占用一个行车道和应急车道,蓝田收费站入口商洛方向匝道占用一个行车道,请途经车辆注意行车安全。

  2、因服务区升级改造,包茂高速西镇段柞水服务区双向入口封闭。

  3、受山体滑坡影响,银百高速安岚段安康南收费站出口引线实行单幅双向通行。

  4、因进行优化工程施工,2022年1月4日至2022年3月31日每日08:00至18:00,十天高速西略段天水方向略阳服务区A区封闭。

  5、因跨线桥梁施工,榆蓝高速榆绥段绥德方向古城滩至榆林南之间K24+600至K26+700段道路中断,榆林方向单幅双向通行。

  6、因石川河桥改扩建,京昆高速西禹段西安方向富平至阎良之间K1009+900至K1010+900段占用应急车道。

  7、因冬季道路安全保畅,沪陕高速商界段界牌方向陕西商南省界附近K1287至K1285段占用超车道和行车道,请过往车辆注意行车安全,预计2022年3月15日结束。

  三、危险路段

  1、榆蓝高速渭河大桥(渭南市境内)

  存在隐患:团雾易发,易发生追尾或多车相撞事故。

  2、榆商高速榆绥段K66—K68孙家园则特大桥(榆林市境内)

  存在隐患:团雾易发,易发生追尾或多车相撞事故。

  3、京昆高速汉宁段回水河8号桥(汉中市境内)

  存在隐患:易积雪结冰,易发生追尾或多车相撞事故。

  4、210国道1499km+582m处(安康市石泉县两河镇新春村一组)

  存在隐患:急弯陡坡路段,易发生坠崖事故。

  5、十天高速K186+450M处(安康市境内)

  存在隐患:下坡弯道,易发生侧翻或冲入对向车道相撞事故。

  四、安全提示

  (一)恶劣天气出行,要严格遵守“降速、控距、亮尾”,通过急弯陡坡、积雪结冰路段,要提前降低车速,不急打方向、急踩刹车,防止车辆失控侧滑翻覆。

  (二)自驾车辆出行,应人车状态良好,合理规划安排行程,1年以内驾龄驾驶人禁止独自驾车上高速公路,遇交通拥堵听从指挥,不占用应急车道。

  (三)乘坐客车出行,要在客运站点乘坐合法客运车辆,乘车时务必系好安全带,不要乘坐站外拉客拼团“黑车”,坚决抵制乘坐超员客车,发现违法行为主动举报。

  (四)发生事故时,要立即开启危险报警闪光灯,将车辆移至不妨碍交通的地方;难以移动的,应当持续开启危险报警闪光灯,并在来车方向设置警告标志。高速公路发生事故后,要在来车方向150米以外设置警告标志,车上人员应迅速转移到安全地带,并立即拨打122报警。

  (五)事故发生后,不争吵、不围观,也不要在高速公路上协商损害赔偿事宜,避免发生二次事故。全省高速公路上发生的不涉及人员伤亡的交通事故,如果双方保险齐全且对事故成因无异议,可使用“交管12123”APP“事故快处”模块进行处理。

  (六)驾车出行,切勿疲劳驾驶,杜绝酒后驾驶、无证驾驶、超速行驶;行经急弯陡坡、长下坡、临水临崖道路,要减速慢行,行经农村、山区公路要注意观察道路两侧情况尤其是支路车辆和行人。

  (七)农村出行切勿乘坐超员面包车,自觉抵制非法载人的轻型货车、三轮车、拖拉机。雨天雾天驾驶要注意降速车速,保持安全行车距离。


来源:陕西省公安厅交警

编辑:杨蓓蕾

双语热点:2022年七大前沿科技:量子模拟和靶向基因医疗******

日前《自然》杂志最新列举2022年七项重要的科学技术,它们可能会在未来一年对科学领域产生重大影响。

Seven technologies to watch in 2022

From gene editing to protein-structure determination to quantum computing, here are seven technologies that are likely to have an impact on science in the year ahead.

从基因编辑到蛋白质结构确定再到量子计算,有七项重要的科学技术可能在未来一年产生重大影响。

Fully finished genomes

完整版基因组

Roughly one-tenth of the human genome remained uncharted when genomics researchers Karen Miga at the University of California, Santa Cruz, and Adam Phillippy at the National Human Genome Research Institute in Bethesda, Maryland, launched the Telomere-to-Telomere (T2T) consortium in 2019. Now, that number has dropped to zero. In a preprint published in May last year, the consortium reported the first end-to-end sequence of the human genome, adding nearly 200 million new base pairs to the widely used human consensus genome sequence known as GRCh38, and writing the final chapter of the Human Genome Project.

2019年,美国加州圣克鲁兹分校基因组学研究员凯伦·米加(Karen Miga)和马里兰州贝塞斯达国家人类基因组研究所研究员亚当·菲利普(Adam Phillippy)启动了“端粒至端粒(T2T)”的联合研究项目,当时大约全球十分之一的人类基因组仍未完成测序,然而,现在该数据已降至零。2021年5月,该联合研究项目声称发现第一个端粒至端粒的人类基因组序列,使用人类共识基因组序列图谱GRCh38增加了近2亿新碱基对,并为人类基因组计划写上了最后一章。

First released in 2013, GRCh38 has been a valuable tool — a scaffold on which to map sequencing reads. But it’s riddled with holes. This is largely because the widely used sequencing technology developed by Illumina, in San Diego, California, produces reads that are accurate, but short. They are not long enough to unambiguously map highly repetitive genomic sequences, including the telomeres that cap chromosome ends and the centromeres that coordinate the partitioning of newly replicated DNA during cell division.

最早发布于2013年的GRCh38基因组序列图谱是一个具有价值的研究工具,它是绘制基因序列读数的“脚手架”,但它也存在许多漏洞,其主要问题在于基因序列读数虽然精确,但过于简短,无法明确绘制高度重复的基因组序列,包括:覆盖染色体末端的端粒,细胞分裂期间协调新复制DNA分裂的着丝粒(centromeres)。

Long-read sequencing technologies proved to be the game-changer. Developed by Pacific Biosciences in Menlo Park, California, and Oxford Nanopore Technologies (ONT) in Oxford, UK, these technologies can sequence tens or even hundreds of thousands of bases in a single read, but — at least at the outset — not without errors. By the time the T2T team reconstructed their first individual chromosomes — X and 8 — in 2020, however, Pacific Biosciences’ sequencing had advanced to the extent that T2T scientists could detect tiny variations in long stretches of repeated sequences. These subtle ‘fingerprints’ made long repetitive chromosome segments tractable, and the rest of the genome quickly fell into line. The ONT platform also captures many modifications to DNA that modulate gene expression, and T2T was able to map these ‘epigenetic tags’ genome-wide as well.

长读测序技术被证明是改变游戏规则的技术,该技术是美国太平洋生物科学公司和英国牛津纳米孔技术公司共同开发的,它能在一次性基因序列读取中,对数万至数十亿个碱基对进行排序,但至少在测序初期,并不是没有错误。时值2020年,T2T项目研究人员重建了他们的第2、3条单独染色体——X和8,然而,太平洋生物科学公司的测序工作已取得重大进展,T2T科学家能检测到长时间重复序列的微小变化,这些微妙的“指纹”使长而重复的染色体片段变得更易处理,基因组剩余部分则很快排列起来,牛津纳米孔技术公司还捕获了许多调节基因表达的DNA修饰,同时,T2T基因测序能在基因组范围内绘制“表观遗传标记”。

The genome T2T solved was from a cell line that contains two identical sets of chromosomes. Normal diploid human genomes contain two versions of each chromosome, and researchers are now working on ‘phasing’ strategies that can confidently assign each sequence to the appropriate chromosome copy. “We’re already getting some pretty phenomenal phased assemblies,” says Miga.

已测序的T2T基因组源自包含两组相同染色体的细胞株,正常的二倍体人类基因组的每个染色体有两个版本,目前研究人员正在研究“阶段策略”,能够自信地将每个序列分配给合适的染色体副本。

This diploid assembly work is being conducted in collaboration with T2T’s partner organization, the Human Pangenome Reference Consortium, which aspires to produce a more representative genome map, based on hundreds of donors from around the world. “We’re aiming to capture an average of 97% of human allelic diversity,” says Erich Jarvis, one of the consortium’s lead investigators and a geneticist at the Rockefeller University in New York City. As chair of the Vertebrate Genomes Project, Jarvis also hopes to leverage these complete genome assembly capabilities to generate full sequences for every vertebrate species on Earth. “I think within the next 10 years, we’re going to be doing telomere-to-telomere genomes routinely,” he says.

T2T项目首席研究员之一、纽约洛克菲勒大学遗传学家埃里希·贾维斯(Erich Jarvis)说:“我们的目标是掌握平均97%的人类等位基因多样性,我认为未来10年之内,我们能将端粒至端粒基因组测序作为常规操作,同时,我们希望利用完整的基因组装配能力提供地球每种脊椎动物的完整基因组序列。”

Protein structure solutions

解析蛋白质结构

Structure dictates function. But it can be hard to measure. Major experimental and computational advances in the past two years have given researchers complementary tools for determining protein structures with unprecedented speed and resolution.

结构决定功能。但研究人员很难衡量。在过去两年时间里,科学实验和计算领域取得的进步,为研究人员以前所未有的速度和分辨率解析蛋白质结构。

The AlphaFold2 structure-prediction algorithm, developed by Alphabet subsidiary DeepMind in London, relies on ‘deep learning’ strategies to extrapolate the shape of a folded protein from its amino acid sequence. Since its public release last July, AlphaFold2 has been applied to proteomes, to determine the structures of all the proteins expressed in humans and in 20 model organisms, as well as nearly 440,000 proteins in the Swiss-Prot database, greatly increasing the number of proteins for which high-confidence modelling data are available.

由DeepMind子公司Alphabet开发的AlphaFold2结构预测算法基于“深度学习”策略,能推算出氨基酸序列折叠蛋白质的结构。该算法自2021年7月发布以来,已被应用于蛋白质组学,用于确定人类和20个模型生物中表达的所有蛋白质结构,以及Swiss-Prot数据库中近44万个蛋白质结构,大幅增加了高可信度建模数据的蛋白质数量。

In parallel, improvements in cryogenic-electron microscopy (cryo-EM) are enabling researchers to experimentally solve even the most challenging proteins and complexes. Cryo-EM scans flash-frozen molecules with an electron beam, generating images of the proteins in multiple orientations that can then be computationally reassembled into a 3D structure. In 2020, improvements in cryo-EM hardware and software enabled two teams to generate structures with a resolution of less than 1.5 ångströms, capturing the position of individual atoms. “Prior to this, we bandied about the term ‘atomic resolution’ with wild abandon, but it’s only been near-atomic,” says Bridget Carragher, co-director of the New York Structural Biology Center’s Simons Electron Microscopy Center in New York City. “This truly is atomic.” And, although both teams used an especially well-studied model protein called apoferritin, Carragher says, these studies suggest that near-atomic resolution is feasible for other, more difficult targets as well.

与此同时,低温电子显微镜的技术改进使研究人员能以实验方法解决最具挑战性的蛋白质和复合物,低温电子显微镜采用电子束扫描快速冻结的分子,生成多个方向的蛋白质图像,然后可以通过计算重新组装成一个蛋白质3D结构。2020年,低温电子显微镜硬件和软件的改进使研究团队能够生成分辨率小于1.5埃的水平解析蛋白质结构,捕捉到单个原子的位置。纽约结构生物学中心西蒙斯电子显微镜中心副主任布里奇特·卡拉格(Bridget Carragher)说:“此前我们曾深入讨论‘原子分辨率’这个术语,但它仅是接近原子,目前我们实验证实获得原子等级清晰度解析蛋白质结构是可行的。”

There is also considerable excitement around a related method, cryo-electron tomography (cryo-ET), which captures naturalistic protein behaviour in thin sections of frozen cells. But interpretation of these crowded, complicated images is challenging, and Carragher thinks computational advances from the machine-learning world will be essential. “How else are we going to solve these almost intractable problems?” she asks.

还有一种相关方法,即低温电子断层扫描(cryo-ET),它可以捕捉冷冻细胞薄片中自然蛋白质特征,但利用该技术解析复杂而拥挤的图像仍存在困难。卡拉格说:“采用机器学习世界的先进算法是必不可少的,相信未来我们能解决棘手的科学难题。”

Quantum simulation

量子模拟

Atoms are, well, atomic in size. But under the right conditions, they can be coaxed into a highly-excited, super-sized state with diameters on the order of one micrometre or more. By performing this excitation on carefully positioned arrays of hundreds of atoms in a controlled fashion, physicists have demonstrated that they can solve challenging physics problems that push conventional computers to their limits.

原子在特定条件下,能被诱导至一个高度激发状态,直径达到1微米或者更大。目前物理学家现已证实,通过对数百个原子阵列进行这种可控激发,可以解决一些具有挑战性的物理问题,实现传统计算机“极限升级”。

Quantum computers manage data in the form of qubits. Coupled together using the quantum physics phenomenon called entanglement, qubits can influence each other at a distance. These qubits can drastically increase the computing power that can be achieved with a given allotment of qubits relative to an equivalent number of bits in a classical computer.

量子计算机以量子位的形式管理数据,利用“量子纠缠”物理现象进行数据耦合,量子位可以在一定距离内相互影响。相对于经典计算机,这些量子位可大幅提高计算能力,而这可以通过给定的量子位分配来实现。

Several groups have successfully used individual ions as qubits, but their electrical charges make them challenging to assemble at high density. Physicists including Antoine Browaeys at the French national research agency CNRS in Paris and Mikhail Lukin at Harvard University in Cambridge, Massachusetts, are exploring an alternative approach. The teams use optical tweezers to precisely position uncharged atoms in tightly packed 2D and 3D arrays, then apply lasers to excite these particles into large-diameter ‘Rydberg atoms’ that become entangled with their neighbours. “Rydberg atom systems are individually controllable, and their interactions can be turned on and off,” explains physicist Jaewook Ahn at the Korea Advanced Institute of Science and Technology in Daejeon, South Korea. This in turn confers programmability.

目前,已有几个研究团队成功利用单个离子作为离子位,但这些离子的电荷很难在高密度下组装,物理学家正在探索另一种方法,其中包括法国国家科学研究中心的安东尼·布罗维(Antoine browwaeys)和美国哈佛大学的米哈伊尔·卢金(Mikhail Lukin),他们使用光学镊子精确地将不带电原子定位在紧密排列的2D和3D阵列中,然后应用激光将这些粒子成为大直径的“里德堡原子(Rydberg atoms)”,使其与它们邻近粒子纠缠在一起。韩国高级科学技术研究所物理学家Jaewook Ahn解释说:“里德堡原子系统是独立可控的,它们的相互作用可以打开和关闭,反之赋予了可编程性。”

This approach has gained considerable momentum in the span of just a few years, with technological advances that have improved the stability and performance of Rydberg atom arrays, as well as rapid scaling from a few dozen qubits to several hundred.

量子模拟技术在短短几年时间里就获得了重大突破进展,技术进步提高了里德堡原子阵列的稳定性和性能,以及从几十个量子位快速扩展至几百个。

Pioneers in the field have founded companies that are developing Rydberg atom array-based systems for laboratory use, and Browaeys estimates that such quantum simulators could be commercially available in a year or two. But this work could also pave the way towards quantum computers that can be applied more generally, including in economics, logistics and encryption.

量子模拟领域的先驱者已成立了公司,正在开发实验室使用的里德堡原子阵列系统,布罗维估计这种先进量子模拟器可以在一两年内投入商业应用,但这项工作也可能为量子计算机的更广泛应用铺平道路,包括:经济学、物流和数字加密领域等。

Precise genome manipulation

精准基因操控

For all its genome-editing prowess, CRISPR–Cas9 technology is better suited to gene inactivation than repair. That’s because although targeting the Cas9 enzyme to a genomic sequence is relatively precise, the cell’s repair of the resulting double-stranded cut is not. Mediated by a process called non-homologous end-joining, CRISPR–Cas9 repairs are often muddied by small insertions or deletions.

尽管CRISPR–Cas9技术拥有强大的基因组编辑能力,但该技术更容易基因失活,而不是达到基因修复,因为尽管针对Cas9酶的基因组序列相对精确,但细胞对该技术产生的双链切割修复却并不精确,CRISPR–Cas9修复通过一种称为“非同源端连接”的过程进行,通常会被微小的基因插入或者删除所混淆。

Most genetic diseases require gene correction rather than disruption, notes David Liu, a chemical biologist at Harvard University in Cambridge. Liu and his team have developed two promising approaches to do just that. The first, called base editing, couples a catalytically impaired form of Cas9 to an enzyme that aids chemical conversion of one nucleotide to another — for example, cytosine to thymine or adenine to guanine. But only certain base-to-base changes are currently accessible using this method. Prime editing, the team’s newer development, links Cas9 to a type of enzyme known as reverse transcriptase and uses a guide RNA that is modified to include the desired edit to the genomic sequence. Through a multistage biochemical process, these components copy the guide RNA into DNA that ultimately replaces the targeted genome sequence. Importantly, both base and prime editing cut only a single DNA strand, a safer and less disruptive process for cells.

美国哈佛大学化学生物学家大卫·刘指出,大多数遗传疾病需要的是基因修正,而不是基因破坏。目前他和研究同事现已开发两种颇有希望的基因操控方法,第一种叫做碱基编辑(base editing),将一种催化受损Cas9与一种酶结合,该酶可以帮助一种核苷酸转化为另一种核苷酸,例如:胞嘧啶转化为胸腺嘧啶,腺嘌呤转化为鸟嘌呤,但目前该方法仅对特定碱基对有效;第二种叫做精准编辑(Prime editing),是该团队最新的研发成果,将Cas9与逆转录酶连接起来,并引导DNA将所需编辑内容精准插入基因组序列。通过一个多阶段的生化过程,这些成分将引导RNA复制成DNA,最终取代目标基因组序列。重要的是,碱基编辑和精准编辑都仅剪切一条DNA链,这对细胞而言是一个更安全、破坏性更小的过程。

First described in 2016, base editing is already en route to the clinic: Beam Therapeutics, founded by Liu and also based in Cambridge, got the nod in November from the US Food and Drug Administration to trial this approach in humans for the first time, with the goal of repairing the gene that causes sickle-cell disease.

碱基编辑技术首次公布于2016年,现已投入临床应用,由大卫·刘创建的Beam Therapeutics公司已于11月获美国食品药物管理局批准,首次应用于人类镰状细胞病基因修复。

Prime editing is not as far along, but improved iterations continue to emerge, and the method’s promise is clear. Hyongbum Henry Kim, a genome-editing specialist at Yonsei University College of Medicine in Seoul, and his team have shown that they can achieve up to 16% efficiency using prime editing to correct retinal gene mutations in mice.

相比之下,精准编辑仍是一项新技术,但改进的迭代技术不断出现,该技术的应用前景也非常明确。韩国首尔延世大学医学院基因组编辑专家Hyongbum Henry Kim现已证实,使用精准编辑技术来纠正老鼠视网膜基因突变,可达到16%的治愈率。

“If we used recently reported, more advanced versions, the efficiencies would be improved even more,” he says,“In some cases, it’s known that if you can replace a gene at a 10% or even a 1% level, you can rescue the disease.”

他说:“如果我们使用最近报道的更先进技术,治疗效率将获得大幅提高,在某些情况下,如果能以10%,甚至以1%的基因进行替换,就可以治愈该疾病。”

Targeted genetic therapies

靶向基因治疗

Nucleic acid-based medicines might be making an impact in the clinic, but they are still largely limited in terms of the tissues in which they can be applied. Most therapies require either local administration or ex vivo manipulation of cells that are harvested from and then transplanted back into a patient. One prominent exception is the liver, which filters the bloodstream and is proving to be a robust target for selective drug delivery. In this instance, intravenous — or even subcutaneous — administration can get the job done.

基于核酸的药物可能会对临床治疗产生某些影响,但它们在可应用的组织方面仍受到限制,大多数治疗方法要么需要局部给药,要么需要体外操作,从患者体内提取细胞,然后将其移植到患者体内。一个显著的例子是肝脏,可以过滤血液,被证明是选择性药物输送的有效靶点,在这种情况下,静脉注射,甚至是皮下注射,均可达到该效果。

“Just getting delivery at all to any tissue is difficult, when you really think about the challenge,” says Daniel Anderson, a chemical engineer at the Massachusetts Institute of Technology (MIT) in Cambridge. “Our bodies are designed to use the genetic information we have, not to accept newcomers.” But researchers are making steady progress in developing strategies that can help to shepherd these drugs to specific organ systems while sparing other, non-target tissues.

美国麻省理工学院化学工程师丹尼尔·安德森(Daniel Anderson)说:“靶向基因治疗存在很大的挑战性,仅是将药物输送至人体任何组织进了困难的,我们的身体是基因信息集合体,而不是接受新的基因信息。”目前研究人员在开发基因治疗方面正取得稳步进展,这些方案可以帮助引导药物进入特定器官系统,而不影响其他非靶向组织。

Adeno-associated viruses are the vehicle of choice for many gene-therapy efforts, and animal studies have shown that careful selection of the right virus combined with tissue-specific gene promoters can achieve efficient, organ-restricted delivery. Viruses are sometimes challenging to manufacture at scale, however, and can elicit immune responses that undermine efficacy or produce adverse events.

腺相关病毒是许多基因治疗工作的首选载体,相关动物研究表明,理性选择合适的病毒,结合组织特异性基因启动子,可以实现高效、器官靶向治疗。然而,相关病毒有时难以大规模生产,并潜在引起人体免疫反应,破坏疗效或者产生身体不良反应。

Lipid nanoparticles provide a non-viral alternative, and several studies published over the past few years highlight the potential to tune their specificity. For example, the selective organ targeting (SORT) approach developed by biochemist Daniel Siegwart and his colleagues at the University of Texas Southwestern Medical Center in Dallas, enables the rapid generation and screening of lipid nanoparticles to identify those that can effectively target cells in tissues such as the lung or spleen.

脂质纳米颗粒提供了一种非病毒的替代方法,之前研究人员发表的研究报告强调了脂质纳米颗粒具有组织特异性送递的潜力,例如:德克萨斯大学西南医学中心的生物化学家 Daniel Siegwart 及其同事开发的选择性器官靶向 (SORT) 方法能快速生成和筛选识别脂质纳米颗粒,使其有效在肺或脾等器官实现靶向治疗。

“That was one of the first papers that showed that if you do systematic screening of these lipid nanoparticles and start changing their compositions, you can skew the biodistribution,” says Roy van der Meel, a biomedical engineer at the Eindhoven University of Technology in the Netherlands.

荷兰埃因霍温理工大学生物医学工程师罗伊·范德米尔(Roy van der Meel)称:“目前首次研究表明,如果对这些脂质纳米颗粒进行系统筛选,并且改变它们的成分,就可以改变它们在生物体中的分布。”

Spatial multi-omics

空间多组学分析

The explosion in single-cell ’omics development means researchers can now routinely derive genetic, transcriptomic, epigenetic and proteomic insights from individual cells — sometimes simultaneously. But single-cell techniques also sacrifice crucial information by ripping these cells out of their native environments.

单细胞组学的迅速发展意味着研究人员可以常规地从单个细胞中获得遗传、转录、表观和蛋白质组学的见解,有时是同时获取,但是单细胞技术在将细胞从原生环境中剥离过程中,也失去了关键信息。

In 2016, researchers led by Joakim Lundeberg at the KTH Royal Institute of Technology in Stockholm devised a strategy to overcome this problem. The team prepared slides with barcoded oligonucleotides — short strands of RNA or DNA — that can capture messenger RNA from an intact tissue slice, such that each transcript could be assigned to a particular position in the sample according to its barcode. “No one really believed that we could pull out a transcriptome-wide analysis from a tissue section,” says Lundeberg. “But it turned out to be surprisingly easy.”

2016年,瑞士皇家理工学院乔基姆·伦德伯格(Joakim Lundeberg)设计了一种策略克服了该问题,他和同事使用条形码寡核苷酸(RNA或者DNA短链)制作载玻片,该载玻片能从完整的组织切片中捕获信使RNA,这样每个转录RNA可以依据条形码被分配至样本中的特定位置,他说:“无人相信我们能从组织切片中提取全转录RNA分析,但事实证明,该策略非常简单。”

The field of spatial transcriptomics has since exploded. Multiple commercial systems are now available, including the Visium Spatial Gene Expression platform from 10x Genomics, which builds on Lundeberg’s technology. Academic groups continue to develop innovative methods that can map gene expression with ever-increasing depth and spatial resolution.

此后空间转录组学技术倍受科学家青睐,目前已有多个商业系统进行应用,包括:10x Genomics公司推出的Visium空间基因表达平台,该平台系统基于伦德伯格的最新技术。随着学术团队不断开发创新的方法,将不断增加深度和空间分辨率来绘制基因表达。

Now researchers are layering further ’omic insights on top of their spatial maps. For example, biomedical engineer Rong Fan at Yale University in New Haven, Connecticut, developed a platform known as DBiT-seq, which employs a microfluidic system that can simultaneously generate barcodes for thousands of mRNA transcripts and hundreds of proteins labelled with oligonucleotide-tagged antibodies.

现在,研究人员正在他们的空间地图之上进一步分层“组学见解”。例如,康涅狄格州纽黑文耶鲁大学的生物医学工程师 Rong Fan 开发了一个名为 DBiT-seq 的平台,该平台采用了一种微流体系统,可以同时为数千个 mRNA 转录本和数百个用寡核苷酸标记的抗体标记的蛋白质生成条形码。

CRISPR-based diagnostics

基于CRISPR技术的诊断

The CRISPR–Cas system’s capacity for precise cleavage of specific nucleic acid sequences stems from its role as a bacterial ‘immune system’ against viral infection. This link inspired early adopters of the technology to contemplate the system’s applicability to viral diagnostics. “It just makes a lot of sense to use what they’re designed for in nature,” says Pardis Sabeti, a geneticist at the Broad Institute of MIT and Harvard in Cambridge. “You have billions of years of evolution on your side.”

CRISPR–Cas系统技术精确切割特定核酸序列的能力源于它作为细菌“免疫系统”对抗病毒感染的作用,这种关联性激发了早期采用该技术的科学家考虑它对病毒诊断的适用性。美国麻省理工学院布罗德研究所、哈佛大学剑桥分校遗传学家帕尔迪斯·萨贝提(Pardis Sabeti)说:“利用它们在自然界中设计的功能非常有意义,毕竟它们已演化了数十亿年。”

But not all Cas enzymes are created equal. Cas9 is the go-to enzyme for CRISPR-based genome manipulation, but much of the work in CRISPR-based diagnostics has employed the family of RNA-targeting molecules known as Cas13, first identified in 2016 by molecular biologist Feng Zhang and his team at the Broad. “Cas13 uses its RNA guide to recognize an RNA target by base-pairing, and activates a ribonuclease activity that can be harnessed as a diagnostic tool by using a reporter RNA,” explains Jennifer Doudna at the University of California, Berkeley, who shared the 2020 Nobel Prize in Chemistry with Emmanuelle Charpentier, now at the Max Planck Unit for the Science of Pathogens in Berlin, for developing the genome-editing capabilities of CRISPR–Cas9. This is because Cas13 doesn’t just cut the RNA targeted by the guide RNA, it also performs ‘collateral cleavage’ on any other nearby RNA molecules. Many Cas13-based diagnostics use a reporter RNA that tethers a fluorescent tag to a quencher molecule that inhibits that fluorescence. When Cas13 is activated after recognizing viral RNA, it cuts the reporter and releases the fluorescent tag from the quencher, generating a detectable signal. Some viruses leave a strong enough signature that detection can be achieved without amplification, simplifying point-of-care diagnostics. For example, last January, Doudna and Melanie Ott at the Gladstone Institute of Virology in San Francisco, California, demonstrated a rapid, nasal-swab-based CRISPR–Cas13 test for amplification-free detection of SARS-CoV-2 using a mobile phone camera.

但并不是所有Cas酶都是一样的,Cas9是基于CRISPR的基因组操作的首选酶,但基于CRISPR的诊断的大部分工作都使用了被称为Cas13的RNA靶向分子家族,该分子家族是2016年由分子生物学家张峰(音译)首次发现的。美国加州大学伯克利分校詹妮弗·杜德纳(Jennifer Doudna)解释称:“Cas13利用其RNA向导通过碱基对识别RNA靶标,并激活核糖核酸酶活性,该活性通过使用报告RNA作为诊断工作进行临床应用。”据悉,她与马克斯·普朗克病原体科学研究所艾曼纽·卡彭特(Emmanuelle Charpentier)因这项研究发现共同获得2020年诺贝尔化学奖。这是因为Cas13不仅会切割向导RNA靶向的RNA,还会对附近任何其他RNA分子进行“旁系切割”。许多基于Cas13的诊断使用报告RNA,使用荧光标记抑制荧光的淬灭分子,当Cas13识别病毒RNA后被激活时,它会切断报告RNA,并从淬灭分子中释放荧光标记,产生可检测信号。有些病毒留下足够强的信号,可以在不进行扩增的情况下进行检测,从而简化了即时诊断。例如:2021年1月,美国加州旧金山格莱斯顿病毒学研究所演示了一种基于鼻拭子的CRISPR-Cas13快速检测方法,可以使用手机摄像头对新冠病毒进行无扩增检测。

RNA-amplification procedures can boost sensitivity for trace viral sequences, and Sabeti and her colleagues have developed a microfluidic system that screens for multiple pathogens in parallel using amplified genetic material from just a few microlitres of sample. “Right now, we have an assay to do 21 viruses simultaneously for less than US$10 a sample,” she says. Sabeti and her colleagues have developed tools for CRISPR-based detection of more than 169 human viruses at once, she adds.

RNA扩增可以提高对微量病毒序列的灵敏度,萨贝提和她的同事现已开发一种微流体系统,仅利用几微升样本中扩增出的基因物质,就能同时筛选多种病原体。“现在,我们已掌握一种同时检测21种病毒的方法,而每个样本的成本不足10美元。”她说。萨贝提还补充说,她和同事还开发出基于CRISPR技术的工具,可以同时检测169种以上的人类病毒。

Other Cas enzymes could flesh out the diagnostic toolbox, Doudna notes, including the Cas12 proteins, which exhibit similar properties to Cas13 but target DNA rather than RNA. Collectively, these could detect a broader range of pathogens, or even enable efficient diagnosis of other non-infectious diseases.

杜德纳称,其他Cas酶可以充实诊断工具箱,包括Cas12蛋白,它表现出与Cas13相似的特性,但其目标是DNA而不是RNA。总体而言,这些技术可以检测范围更广的病原体,甚至可以有效诊断其他非传染性疾病。

【爱投彩票老版本_安全购彩👉👉十年信誉大平台,点击进入👉👉 打造国内最专业最具信赖的彩票平台,为您提供爱投彩票老版本_安全购彩用户登录全网最精准计划软件,APP下载登陆,强大的竞彩网上推荐!!】

咸阳市级机关党员干部到农村帮助群众抢收抢种******

  近段时期,因遭遇连续降雨天气,我市秋粮收获受到影响,秋播整地难度加大。为抓住用好天气转好机遇、帮助群众抢收抢种、促进增产增收,按照市委统一部署,10月16日上午,市委书记杨长亚、市长卫华、市人大常委会主任张岗岭、市政协主席汪文展和副市长程建国等市级领导到泾阳县桥底镇,同基层干部和当地群众一同抢收玉米,用实际行动解决群众实际困难、检验党史学习教育“我为群众办实事”实践活动成效。

\

  市委书记杨长亚在玉米田间劳动。

  杨长亚一行来到群众高修茂家的玉米田间,撸起袖子弯下腰,迅速投入劳动中。大家分工协作、干劲十足,采摘、割杆、运送、装车流水线作业,现场一派热火朝天的景象。

\

  杨长亚指出秋收秋播事关粮食安全、市场和社会稳定,是当前农业农村工作的头等大事,要趁天抢时、科学调度,密切关注天气变化,上足机械和劳力,精心组织收播会战,人不能停、地不能闲,确保秋粮颗粒归仓、秋播及时入种。

\

  市委书记杨长亚一行在键潍粮食专业合作社调研。

  杨长亚一行还到键潍粮食专业合作社实地察看了农作物收播、运输、储存、销售等情况,强调要发挥农村合作社和农技专家作用,组织好专业队伍,运用好媒体发动,服务到田间地头,指导到具体村组,引导群众积极做好秋收秋播,保障秋季农业生产大局稳定。要着眼长远、一体推进,深入实施“吨粮田”粮食保安、“万元果”质效攻关、百万元农村合作组织培育等六大工程,大力推广特色农业和规模经营,想方设法多渠道增加农民收入。

\

  当天,近万名市级机关党员干部参与了帮收帮种工作,迅速在全市各地掀起了抢收抢种热潮。全体市级领导按照“三包三促”任务分工,分赴各市区县参加活动。



来源:咸阳日报

编辑:二三里

完婚请23名同事收礼4389元被检举 男子被企业处分并提议离职******

  近日,“男人完婚请同事被检举牟取不就在权益”引起网民关心。

  据重庆广电视頻报导:28岁的阳老先生,是重庆市一家公司的监察员,承担监管店面的经营。2021年阳老先生完婚,喜宴邀请了了解的23名同事,扣除同事礼金4389元。

  以后,有同事检举他因涉嫌牟取不就在权益,领导干部规定阳老先生退回同事的礼金,并被公司处罚,与此同时提议阳老先生辞职。

  阳老先生邀请同事23人。

  平均收礼金不上200元。

  28岁的阳老先生是一家幼儿用品股份有限公司公司的监察员,工作中是监管店面的经营。9月19日,他与老婆举行婚宴,邀请了亲戚朋友和23名同事一共19席。

  阳老先生表明:自身的初心和念头不取决于礼金,这一场婚宴自身是亏损办的,关键便是图一个繁华。

  他所邀请的同事全是一起工作2年之上的,大伙儿平常工作中上都很熟。

  婚宴完毕以后不久,9月25日,阳老先生的领导干部对他说,有同事检举他邀请同事喝喜酒,因涉嫌牟取不就在权益,规定他退回所有礼金。

  阳老先生称,领导干部口头上传递他先把钱退了,再在西南地区站区有一两百个高管的群内做一个说明并道歉,这一事儿就告一段落。

  阳老先生退回礼金后。

  內部记过处分被规定辞职。

  一开始阳老先生有一些懵,可是他或是按规定将礼金所有退回,可事儿都还没完。

  9月26日,总公司财产维护监察核心发过来文档,并在全公司范畴内通告,內容是监察员阳老先生在结婚期内违背公司监察机构的组织纪律性,违背廉洁纪律和要求,邀请重庆市分公司共23人接纳礼金4389元,做为监察员理当了解接纳礼金的个人行为必定会危害日后公平履行职责,理当了解廉洁从业是监察工作人员的主要规定。勒令阳老先生退回礼金,对他作出內部记过处分,并调职重庆市分公司。

  见到公司作出的处理决定,阳老先生有特别憋屈,说自身邀请的同事有23位,有16位是重庆市分公司每个店面的责任人,剩余几个是他单位的同事,一共接到礼金四千多元,平均还不上200元。而且,他邀请的人全是在工作上长期性相处的人,邀请是出自于情份,并非是运用监察员职位在牟取不就在权益。

  喝喜酒的同事刘先生表明,阳老先生的婚宴没什么独特,便是请亲戚朋友吃个饭,他也不会感觉去参与个婚宴有哪些难题。

  公司组织纪律性无相关要求。

  阳老先生要求公司撤消惩罚。

  阳老先生觉得很有可能是他邀请的同事中有16位店面责任人平常是他工作中,监管的目标,他由于沒有保持距离,因此引起了后边的这一切。10月27日,阳老先生给公司有关部门发去一份电子邮件,对惩罚提出质疑,期待公司撤销惩罚。公司层面沒有回应他的需求,但提议阳老先生辞职。

  对于此事,阳老先生表明,自身辞职没什么问题,但规定澄清事实,撤销惩罚电子邮件。他认为自身沒有违法乱纪,由于公司的员工制度,各类管理制度等,并沒有规定或表明监察职工不可以邀请经营同事喝喜酒。但规定经营请监察职工用餐,监察不可以参加。

  新闻记者资询律师界人员,刑事辩护律师田海英觉得,从现阶段掌握到的状况看来,公司惩罚证据不够,该公司的员工守则和监察核心纪律条例上面沒有有关要求说阳老先生邀请同事喝喜酒是违规违纪的个人行为。

  阳老先生称,这一通告对自身以后的事业发展有一定危害,依然会要求公司撤消惩罚。自身的需求也非常简单,期待公司还她一个清正,自身清正地进到公司,也期待可以清正地离去。

  >>网民见解。

  不愿去能够没去,来到又检举,不太厚道。

  这件事情在网络上发醇后,众网民也是纷纷议论:

  “23本人4389,均值一个人不上200还被检举?”。

  “吃席不上200还退了,白吃一顿席”。

  “感觉没有什么情分,不愿去能够没去,来到又检举,不太厚道”。

  “什么是不恰当盈利。他所接到的4千几块里有多少能够跟这一挂上当呢?”。

  “举报者没什么问题,由于他有检举的支配权,对于是不是违反规定要由公司来判决。”。

  “完婚者能够传出邀请,那受邀者是否接纳邀请彻底看自身,没必要参与了婚宴,掏了礼钱,可是过后悔约,还把别人给告了,让大喜事增添一些闹心,这也因小失大。”据九派新闻。


来源于:华商网-华商报。

编写:杨蓓蕾。

瓜帅:强势开局非常重要,因为当我们状态最好时要举行世界杯

1.男子将保险柜伪装成垃圾放在垃圾桶旁边,24万现金被人捡走

2.加拿大一省长讲话时误吞蜜蜂,吓坏记者:它在肚子里嗡嗡作响

3.张家界天门山自行车赛坠亡女骑手遗体还乡 家属获45万元补偿

4.15套“平价”穿搭!吊带、半裙百元内搞定

© 1996 - 爱投彩票老版本_安全购彩 版权所有 xxxxx

地址:

电话:(总机)

编辑部邮箱:

广发彩票-官网-湖北分分彩-安全购彩-亚投彩票APP登陆-最新版APP下载-彩票_360彩票_安全购彩-亚投彩票APP登陆-最新版APP下载-好彩彩票 - 投注网-官网-乐发彩票-安全购彩-6号娱乐APP下载|首页-一分快3-首页-江苏快三彩票平台-安全购彩-大发游戏_首页-3分快三app-官网-彩神vI首页登录_新版-极速快三-首页-快三软件下载-官网-购乐彩票-首页
思客数理话|数据告诉你,快递背后的经济活力| “加油鸭”“小茄子”来了!多家银行推出数字藏品,你想要吗?| 上海中小学、托幼机构9月1日开学、开园| 美国防部拖延交接进程?回应:已有400余人进行会谈| 四川未开发风景区突发山洪:当地人不去 许多平台推荐| 夏天反而容易增肥?你无意中多吃了很多糖| 两周年,天问一号拍了颗“土豆”,美国俄罗斯日本为何都感兴趣?| 为什么你的发型不够美?可能是这些原因!| 中国创造相当于地球磁场90多万倍的磁场| 空客直升机向巴西客户交付首架ACH160| 堪培拉机场突发枪击事件!澳媒照片显示航站楼玻璃窗有弹孔| 军嫂郑如:虽苦不怕,是我对爱的承诺| 山洪逃生者:说野生景区停车都找不到地 入口处要扫码| 8月14日起,三峡机场可直飞宁夏中卫| 媒体:美对中方激烈反应估计不足 中美关系结构性震荡| 辽宁遭暴雨侵袭致城市内涝 紧急转移12万人| 高温红色预警继续!11省区市局地最高温超40℃| 欧洲拉响警报:莱茵河面临断航 北极400亿吨冰川融化|